Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration.

نویسندگان

  • C A Tobias
  • J S Shumsky
  • M Shibata
  • M H Tuszynski
  • I Fischer
  • A Tessler
  • M Murray
چکیده

Ex vivo gene therapy, utilizing modified fibroblasts that deliver BDNF or NT-3 to the acutely injured spinal cord, has been shown to elicit regeneration and recovery of function in the adult rat. Delayed grafting into the injured spinal cord is of great clinical interest as a model for treatment of chronic injury but may pose additional obstacles that are not present after acute injury, such as the need to remove an established scar, increased retrograde cell loss and/or atrophy, and diminished capacity for regeneration by neurons which may be doubly injured. The purpose of the present study was to determine if delayed grafting of neurotrophin secreting fibroblasts would have anatomical effects similar to those seen in acute grafting models. We grafted a mixture of BDNF and NT-3 producing fibroblasts or control fibroblasts into a complete unilateral cervical hemisection after a 6-week delay. Fourteen weeks after delayed grafting we found that both the neurotrophin secreting fibroblasts and control fibroblasts survived, but that only the neurotrophin secreting grafts provided a permissive environment for host axon growth, as indicated by immunostaining for RT-97, a marker for axonal neurofilaments, GAP-43, a marker for elongating axons, CGRP, a marker for dorsal root axons, and 5-HT, a marker for raphe spinal axons, within the graft. Anterograde tracing of the uninjured vestibulospinal tract showed growth into neurotrophin producing transplants but not into control grafts, while anterograde tracing of the axotomized rubrospinal tract showed a small number of regenerating axons within the genetically modified grafts, but none in control grafts. The neurotrophin expressing grafts, but not the control grafts, significantly reduced retrograde degeneration and atrophy in the injured red nucleus. Grafts of BDNF + NT-3 expressing fibroblasts delayed 6 weeks after injury therefore elicit growth from intact segmental and descending spinal tracts, stimulate modest regenerative growth by rubrospinal axons, and partially rescue axotomized supraspinal neurons and protect them from atrophy. The regeneration of rubrospinal axons into delayed transplants was much less than has been observed when similar transplants were placed acutely into a lateral funiculus or, after a 4-week delay, into a hemisection lesion. This suggests that the regenerative capacity of chronically injured red nucleus neurons was markedly diminished. The increased GAP43 reactivity in the corticospinal tracts ipsilaterally and contralaterally to the combination grafts suggests that these axons remain responsive to the neurotrophins, that the neurotrophins may stimulate both regenerative and sprouting responses, and that the grafted cells continue to secrete the neurotrophins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grafts of BDNF-producing fibroblasts rescue axotomized rubrospinal neurons and prevent their atrophy.

We have reported that intraspinal transplants of fibroblasts genetically modified to express brain-derived neurotrophic factor (BDNF) promote rubrospinal axon regeneration and functional recovery following subtotal cervical hemisection that completely ablated the rubrospinal tract. In the present study we examined whether these transplants could prevent cell loss and/or atrophy of axotomized Re...

متن کامل

BDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats.

Although regeneration of injured axons is inhibited within the adult CNS, moderate recovery can be found in patients and animals with incomplete spinal cord injury (SCI). This can be partly attributed to sprouting of spared and injured axons, rostral and caudal to the lesion, respectively. Recently, it has been reported that following a thoracic SCI such sprouting can result in indirect reconne...

متن کامل

Undesired effects of a combinatorial treatment for spinal cord injury--transplantation of olfactory ensheathing cells and BDNF infusion to the red nucleus.

Transplantations of olfactory ensheathing cells (OECs) have been reported to promote axonal regeneration and functional recovery after spinal cord injury, but have demonstrated limited growth promotion of rat rubrospinal axons after a cervical dorsolateral funiculus crush. Rubrospinal neurons undergo massive atrophy after cervical axotomy and show only transient expression of regeneration-assoc...

متن کامل

Transplants of cells genetically modified to express neurotrophin-3 rescue axotomized Clarke's nucleus neurons after spinal cord hemisection in adult rats.

To test the idea that genetically engineered cells can rescue axotomized neurons, we transplanted fibroblasts and immortalized neural stem cells (NSCs) modified to express neurotrophic factors into the injured spinal cord. The neurotrophin-3 (NT-3) or nerve growth factor (NGF) transgene was introduced into these cells using recombinant retroviral vectors containing an internal ribosome entry si...

متن کامل

BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Talpha1-tubulin mRNA expression, and promote axonal regeneration.

Rubrospinal neurons (RSNs) undergo a marked atrophy in the second week after cervical axotomy. This delayed atrophy is accompanied by a decline in the expression of regeneration-associated genes such as GAP-43 and Talpha1-tubulin, which are initially elevated after injury. These responses may reflect a deficiency in the trophic support of axotomized RSNs. To test this hypothesis, we first analy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental neurology

دوره 184 1  شماره 

صفحات  -

تاریخ انتشار 2003